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Homogeneous scaling of the group space of the Poincar6 group, P~o, is shown 
to induce scalings of all geometric quantities associated with the local action of 
Plo. The field equations for both the translation and the Lorentz rotation 
compensating fields reduce to O(1) equations if the scaling parameter is set 
equal to the general relativistic gravitational coupling constant 8 ~Gc -4. Standard 
expansions of all field variables in power series in the scaling parameter give 
the following results. The zeroth-order field equations are exactly the classical 
field equations for matter fields on Minkowski space subject to local action of 
an internal symmetry group (classical gauge theory). The expansion process is 
shown to break Plo-gauge covariance of the theory, and hence solving the 
zeroth-order field equations imposes an implicit system of P~0-gauge conditions. 
Explicit systems of field equations are obtained for the first- and higher-order 
approximations. The first-order translation field equations are driven by the 
momentum-energy tensor of the matter and internal compensating fields in the 
zeroth order (classical gauge theory), while the first-order Lorentz rotation field 
equations are driven by the spin currents of the same classical gauge theory. 
Field equations for the first-order gravitational corrections to the matter fields 
and the gauge fields for the internal symmetry group are obtained. Direct Poincar6 
gauge theory is thus shown to satisfy the first two of the three-part acid test of 
any unified field theory. Satisfaction of the third part of the test, at least for 
finite neighborhoods, seems probable. 

1. I N T R O D U C T I O N  

A d i r e c t  g a u g e  t h e o r y  f o r  t h e  P o i n c a r ~  g r o u p  was  g i v e n  in  p a r t  I o f  

t h i s  w o r k  ( E d e l e n ,  1985a)  b y  i m p l e m e n t i n g  a m i n i m a l  r e p l a c e m e n t  o p e r a t o r  

b a s e d  o n  a r e a l i z a t i o n  o f  Plo as a s u b g r o u p  o f  GL(5,  R )  t h a t  m a p p e d  a n  

af f ine  se t  i n t o  i tself .  T h i s  t h e o r y  w as  e x t e n d e d  in  I I  ( E d e l e n ,  1985b)  a n d  
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the problem of gauging a Poincar6-invariant theory with an internal sym- 
metry group was examined in III (Edelen, 1985c). Representations for the 
connection and curvature structures were obtained in IV (Edelen, 1985d), 
and a free field Lagrangian for the local action of Plo was specified. Explicit 
citation of equations from these four papers will be made by hyphenation 
with the appropriate Roman numeral. 

The gauge theory that obtains by this procedure works whenever the 
corresponding gauge theory of matter fields on Minkowski space-time with 
an internal symmetry group is well defined. It exhibits the correct gravita- 
tional limit in that it reduces to general relativity whenever the total momen- 
tum-energy tensor of the matter fields and the internal symmetry- 
compensating fields are symmetric and the spin currents all vanish. Further, 
the holonomy group of the resulting space-time U4 is the lifted component 
of the Lorentz group that is connected to the identity, the representations 
contain contributions from both the Lorentz and the translation sectors, the 
torsion is algebraically determined by the spin currents and the coframe 
fields, and the field equations for the compensating fields of Plo are first-order 
equations without differential coupling. 

Although these results argue in favor of a unified gauge field theory, 
there is an acid test that this and any other theory must pass before its 
presumption of correctness may be tentatively accepted. We know that 
gauge theories of matter fields with internal symmetry groups on Minkowski 
space-time lead to very accurate predictions in many situations [e.g., quan- 
tum electrodynamics with the U(1) gauge group, which is the simplest and 
probably the most accurate]. Since the underlying manifold is Minkowski 
space-time, gravitational effects are necessarily ignored (switched off). Now, 
gauging the Poincar6 group by allowing it to act locally has the effect of 
switching gravitational effects back on, and the theory given in I-IV shows 
that the effects of this process influence the matter fields and the compensat- 
ing fields for local action of the internal symmetry group. Accordingly, local 
action of the Poincar6 group will change the matter fields and the compensat- 
ing fields for the internal symmetry group relative to the evaluations com- 
puted in the Minkowski space formulation. There will therefore be changes 
in the observables associated with the matter fields and the compensating 
fields for the internal symmetry group. The acid test consists in showing 
that the changes in the predicted values of observables fall within the 
experimental error whenever the Minkowski-space formulation is in good 
agreement with experiment. 

There are three aspects of the acid test that require analysis. A clear 
and pressing first requirement is that the gauge theory reduce to the Mink- 
owski-space formulation in an appropriate asymptotic limit. This require- 
ment is shown to be satisfied in Section 6. Second, field equations for the 
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fields that correct the Minkowski-space evaluations have to be obtained. 
Section 7 acquits this task. These two of  the three parts can and have been 
solved in the general context (i.e., without specification of the Lagrangian 
for the matter fields or the compensating fields for the internal symmetry 
group). The third part is necessarily specific to explicit situations, since it 
requires calculation of changes in observables that obtain as a consequence 
of switching on gravity. This part is left to those better qualified in the 
specific tasks. I can only remark that the correction terms obtain as first-order 
terms in an expansion in the general relativistic coupling constant 87rG/c 4, 
which is approximately 10 -40 in atomic units. It may thus be anticipated 
that changes in the observables will be "small," barring unforseen reson- 
ances or unreasonable pathologies associated with solutions of the correc- 
tion fields. 

2. GROUP SCALING 

The unit in the group space of the Poincar6 group has been assigned 
in a default manner to be unity. It is clear, however, that we can always 
change the unit in the group space of/'1o if this should prove useful; simply 
note that any multiple of  a basis for a Lie algebra is another basis for that 
Lie algebra. Thus, if we use e to denote the new group space unit, the 
generators of/91o undergo the transitions 

1~->1~ = el~, ei->ei=eei (1) 

and 

cJ -, O e = (2) 

These transitions entail corresponding transitions in all of  the under- 
lying /'1o quantities. The distortion 1-forms (coframe fields) are given by 
(I-12), and hence their coefficients may be written in the equivalent form 

Bj = ~ + WT l~ik xk q- c~ k e~ 

where the W's are the components of the compensating 1-forms for the 
local action of  the Lorentz sector and the ~b's are the components of the 
compensating 1-forms for the local semidirect product action of the transla- 
tion sector. We therefore have the transition 

g = + W; lo' xk + 40 (3) 

The corresponding transition of the coefficients of  the frame fields will be 
written 

bij+ 6j= 6~ + ef)~ (4) 
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since 

It therefore follows from (IV-13) that 

L~I-) s  = ~s s  = g'~ "~q (5) ~ p  *aq ~ 3  

The group scaling of Plo obviously induces transitions in the connection 
coefficients. The anholonomic connection coefficients are given by (IV-28), 

= Wk l~j 

and hence we have the transition 

~ j ~  -~ _ ~ ~ -~ 
Tkj -- e W k  1,~j = eF kj (6) 

Since the connection coefficients for the adjoint action of  P~o have the 
evaluation 

r ~ = w~c.~o 

we have 

r ~ - ~  ~ = ~rk~ = e w ~ c f .  (7) ka Jt ko~ 

The total connection coefficients for the matter fields are given by [see 
(1-67) and (III-23)] 

a B b B 
r B =  W k M , ~ A + A j f b A  

Here, the A's are the components of the compensating 1-forms for the local 
action of Gr and the f fs  are a basis for the Lie algebra of the action of Gr 
on the matter fields. These connection coefficients thus undergo the 
transition 

r ~ , - ~ r ~  o ~ ~ ~ = e W k  MonA+ AkfbA (8) 

where the Me are a basis for the Lie algebra of  Plo on the matter field 
representation. The e in (8) comes from the fact that scaling in the group 
space of/91o necessarily carries over to any representation of/)1o, and hence 
we have the transition M~ ~ eM~. On the other hand, scaling in the group 
space of /'1o leaves the group space of the internal symmetry group 
unchanged, so that there is no e in the terms that come from the local 
action of G .  

The holonomic connection coefficients are given by (IV-12), 

F~j= ~ i i p Wk L,~j + bp OkBj 
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ThUS, s i n c e  

we have the transition 

, _ 6 ~ , +  ~ ~ k p Bj - W~ l~kx + 4~j 

i - i  - i rkj-  rkj:  rkj = e( Wk~ = iL~j + bp-i akB;) (9) 

The torsion thus undergoes the transition 
=i = i Sikj -~ S~j = eSkj = eF[kj] (I0) 

The induced transition of the curvature quantities are now easily 
obtained. It follows directly from (I-21) that the L(4, R) curvature 2-forms 
undergo the transition 

0 '~ ~ 0~ = d W  ~ +�89 z' ^ W t3 (11) 

Thus, since the holonomic curvature tensor has the evaluation (IV-29), 

R ~m j = O'~m L,~ ~ 

we have 

i ~ i k m j =  = i  --a = i Rkmj --> e R k m  j = e, OkmLa j  (12) 

It now easily follows that 

g o  -> g o  = BPhvq ~q, gO __> g O  = ~ p h p q ~ q  (13) 

and hence (12) gives 

R0-->/~ij e/~0 =k = = eRko, R -> R = eR (14) 

3. D E T E R M I N A T I O N  O F  T H E  S C A L I N G  P A R A M E T E R  

Up to this point, the value of e is arbitrary. There is, however, a natural 
choice for e, which I now proceed to demonstrate. The field equations for 
the Plo compensating fields, with the choice of the free field Lagrangian 
given in IV, are 

R o - ~ R g  o + Ag~ = Kr 0 (15) 

k,~ j i i j = ~ j ~  (16) g (S imL~k-2SimL~k)  B 

[see (IV-57) and (IV-67)]. Here, % are the components of the total momen- 
tum-energy tensor (matter+internal  symmetry fields), K is the general 
relativistic coupling constant 8~rG/c ~, and the J 's  are the spin currents that 
are given by 

j i  a l~ i r k AAr A'tI tB (17) 
-~- t,,kL,A.tVj t aB  x 
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Under group scaling, the occurrence of the M,  in (17) shows that 

j i  ...> .~i  E j i =  - i  -k  A B = ebkLaM,~B~t  r (18) 

and hence (15) and (16) go over into 

e (/~,j - l/~gj) + ag o = K,~u (19) 

2 - k i n  ~ j  = i =i K =i  
e g ( S i , , , L , ~ k - E S . , , f _ . d k ) = e ~ J ~ ,  (20) 

Thus, the field equations given by (19) for the translation compensating 
fields are O(e) if A = O(e), while the field equations for the Lorentz 
compensating fields are O(e2). 

Now, all of the barred and double-barred quantities in these equations 
are O(1) relative to e. Accordingly, (19) a n d  (20) become simultaneously 
O(1) equations for the choice 

e, = K = 87rGc -4 (21) 

We thus have 

- ~ u - � 8 9  (22) 

1 
- k i n  ~ j  = i =i = " ~ =i  
g ( S , , n L , ~ k - 2 S , m L ~ k )  = B J~ (23) 

for the choice of e given by (21). 
Although we could have taken K = ke  with k = O(1) instead of (21), 

there is no real purpose served. On the other hand, there is no loss of 
generality in making the choice (21), because of the freedom in the choice 
of e, and it does account for the coupling constant K that occurs in the free 
field Lagrangian for Plo- The clincher is the fact that this choice of e 
simultaneously reduces all P~o field equations to O(1) equations. 

4. SCALING OF THE FIELD EQUATIONS FOR MATFER 
A N D  I N T E R N A L  S Y M M E T R Y  

Associated with the Plo field equations are field equations for the matter 
fields and for the compensating fields of the internal symmetry group (7,. 
The state variables of the matter fields are denoted by {~g: 1--< A <--m}. 
Under minimal replacement for Plo x Gr, the coordinate derivatives 0 ~  A 
go over into the quantities 

y A =  bk(o~Xl2,A+ W~M,,~.q2,E + b A E AkfbVa't r ) (24) 
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It thus follows that the y's undergo the following transition when the group 
space of Plo is scaled: 

y A _ > y A = ~ k ( o k ~ A + e W ~ M g ~ e  b A +AkfbE~ ) (25) 

The scaled y-fields are thus O(1) fields relative to e. 
Action of the minimal replacement operator converts the Lagrangian 

L(x  i, ~A, oi~A) for the matter fields on Minkowski space into the new 
Lagrangian L(x  i, '.F A, yA) on the space U4. This new Lagrangian gives rise 
to the constitutive relations [see (III-22)] 

L~A = OL/Oy A, LA = OL/O~ (26) 

and hence scaling of the Plo group space gives 

LiA ~ L~ = Off./O~ A, LA ~ LA = aI . /o~ a (27) 

where 

f~ = L(x', ~A, yA) 

The matter field equations in U4 have been shown to take the form 
(see Ill-23) 

c~ E b E j i Oj{ Bb~L~A} - { Wj M~A + A~ fbA){ Bb,LE} = BLA 

with 

B = det(B~) = (_g)1/2 

We thus have the Plo-scaled equations 
- - j  - i  a E b E -~-j  - i  Oj{ Bb,LA} - ( e W; M,~A + A t f bA){ Bb,LE} =/~/-7,A (28) 

The form of the scaled matter field equations, (28), although adequate 
for most purposes, does not exhibit the manifest gauge covariance that 
these equations possess. In order to bring out this aspect of the problem, 
let us introduce the notation 

N~ =/~b~/~ (29) 

It  then readily follows that the N's are the components of a mixed tensor 
density of the indicated type. Accordingly, its total gauge-covariant deriva- 
tive (see IV) is given by 

T 
V k NJa = ok NJa + Fqkm N~, - F k~ N ~  - I"~,, NJA (30) 

and we have 

T 
v j u k = 0 j u k - ~ u ~  vJ m +2S~,.NA (31) 
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It is now just a matter of combining (8), (29), and (31) in order to see that 
(28) assumes the equivalent form 

T 

( V j  - , .  . . . .  i -- 2Smj){ Bb~iLA} =- B L  A (32) 

Now, B and the b's are gauge-covariant constant fields, and hence so are 
their P10 scaled values. We therefore have the simplified covariant form of 
the matter equations 

- - ,  r = _ ,  
j m ! b~(Vj-2eS.,j)LA = f-.A (33) 

when (10) is used. This form of the matter field equations has the additional 
advantage of showing the explicit coupling to the torsion field that was 
only implicit in the earlier version (28). In particular, we see that the torsion 
coupling terms are O(e)!  

Under the restriction that the free field Lagrangian for the gauge- 
compensating fields be at most quadratic in curvature and torsion, it was 
shown in III and IV that the total free field Lagrangian was the sum of  a 
free field Lagrangian H e  for Gr. Thus, the constitutive relations (III-25) 
assume the form 

G~ = BQ~,  Q~ = O(IIG)/aO b (34) 

where the O's are the components of the curvature 2-forms for the local 
action of the internal symmetry group. Scaling of the group space of Plo 
thus leads to the transition 

- - 

o BQb ,  Q~ = a ( f I ~ ) / a o  b. (35) 

It is now simply a matter of substituting (35) into (III-26) in order to obtain 
the scaled field equations for the compensating fields for the local action 
of Gr: 

- A j  k .  ,BQJ~ - EBb m L A f , ~  (36) 

The k's in (36) are the structure constants for the internal symmetry group 
Gr. 

A similar situation obtains here as with the matter field equations; 
namely, the equations represented by (36) are not displayed in a gauge- 
covariant form. In order to remedy this, we introduce the quantities 

Y~ = / ~ ( ~  (37) 

which are the components of a mixed tensor density of the indicated type. 
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Total gauge-covariant differentiation gives 

T 
Vky =Oky + j v m ,  - ,  , .  y c,_-m J- k m l b  + F k m Y b  - - F k b  F k m g g  

The same procedure as that used with the matter field equations now gives 

T 

--  2 e S m j ) (  BQJ~)  - e S j m  B Q ~  = 5 B b m  L A f  bE X~ t ( 3 8 )  
( V j  =m - - - ' i  =i - - ' m  1 - - i  - m  A E 

However,/~ is gauge-covariant constant, and hence (38) gives the simplified 
gauge-covariant constant field equations 

T 
- 2 e S m j )  Q4~, - eSj,, ,  QJ~, - ~ ~ , . , . . ~ A j b e i  (39) ( V j  -m  --"i =i - "m -- 1 ff_~i Fm 4" AttirE 

The explicit coupling to the torsion field of U4 is now exhibited, and it 
again turns out to be O(e).  Note in particular that the same derivation 
operator occurs in the Gr-field equations as occurs in the matter field 
equations. There is a difference, however, for (39) entail the full torsion 
tensor in addition to its contraction, while the matter field equations couple 
only to the contracted torsion tensor. 

5. EXPANSION IN THE GROUP SCALING PARAMETER 

The evaluation of the scaling parameter obtained in Section 3, namely 

e = 8 7 r G c  - 4  

shows that e is very small except in systems of  very exotic units (e - -  1 0  - 4 0  

in atomic units). It is therefore natural to consider expansions of the various 
field quantities in power series e: 

~t~ t a -~- ~I~ O A'~- E ' ~  IA'~ - e 2 ~ 2 A " ~  " " " ( 4 0 )  

A b = A o ~ +  e A ~ +  e 2 A 2 b +  ' ' '  (41) 

W i  W o i  + ,~ 2 ,~ o,= a e W l i  + e  W 2 i  + "  " �9 (42) 

- -  ~Ok  q- Eq~lk q- e 2 t ~ 2 ~ - I  - '  (43) 

These expansions induce similar expansions of all quantities that occur in 
the field equations. For example, with the obvious notation, we have 

E~A = Lo~A + e L l A  + e 2 L 2 ~  + ' ' "  (44) 

Thus, quantities with a lower zero denote evaluation at e = 0, quantities 
with a lower 1 denote evaluation of the derivative with respect to e at e = 0, 
etc. 



6 8 0  Edelen 

The standard process is now at hand. We expand all terms in each 
field equation in ascending powers of e and then equate corresponding 
terms (i.e., the equations are required to be satisfied as algebraic identities 
in e). This leads to systems of field equations of zeroth order, of first order, 
of second order, etc. These are the subject of the next few sections. 

There is one critical point that needs to be made here, however. The 
process of e expansion of the field equations breaks the Plo gauge covariance 
of the theory. This is most easily seen by using (11) and 

~ a  = O0 ~ -t- cO1 ~ -~ E 2 0 2  a "+'" " " 

to obtain 

Oo ~ = d W o  ~ 

OF = a W j  +�89 ~ ^ Wo" 

02 ~ = clWF + C ~ ,  Wo ~ ^ W J  

A direct inspection shows that none of these resulting "e-curvature" quan- 
tities is Plo-gauge-covariant. 

A result of this nature should not be unexpected if classical gauge 
theory is to result in the zeroth-order approximation. Classical gauge theory 
obtains in Minkowski space, where Plo necessarily acts only globally. We 
are thus not at liberty to perform arbitrary local translations (arbitrary 
coordinate transformations) after the e expansion has been made, because 
global Plo invariance does not imply local Plo invariance. In effect, the 
zeroth-order Minkoski-space approximation fixes the coordinate cover and 
hence there is an implied system of gauge conditions in operation. 

6. THE MINKOWSKI-SPACE APPROXIMATION 

We deal with the zeroth-order approximation in this section. 
The formulas given in previous sections show that 

Bo} = boj = ~j, Bo = 1 (45) 

go~ = hu,  go ij = h ~ (46) 

i 
Rok , , j  = 0, Sojk = 0 (47) 

Thus, U4 devolves to Minkowski space in the zeroth-order approximation. 
Indeed, inspection of the previous formulas shows that all terms involving 
either the W's or the ~b's vanish in the zeroth-order approximation. 
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Next, note that (25) implies 

A b47 A , l t  E (48) Yo a = dido A+ ~Oi~b~-- o 

and hence minimal replacement for P~o x Gr reduces to minimal replacement 
for Gr in the zeroth-order approximation. It thus follows that 

LOiA, LOA, Qo~ 

coincide with what would obtain for a gauge theory on Minkowski space 
with the internal symmetry group Gr. Further, the only surviving field 
equations are the zeroth-order approximation equations that obtain from 
(28) and (36): 

j b E j 
Oj L O A  - -  A o i  f bA Log = L O A  ( 4 9 )  

~jl")  j i  A ab- c f l  j i  __ 1 1 i 4" A,~I t E 
~'Ob - -  z"JtOj r~a b '~Oc  - -  2"t"OA,l bE "" O ( 5 0 )  

These, however, are just the field equations for matter fields on Minkowski 
space subject to local action of the internal symmetry group Gr; that is, 
classical gauge field theory. 

The zeroth-order approximation of direct gauge theory for Plo • Gr is 
the standard gauge theory for an internal symmetry group Gr on Minkowski 
space. I will therefore refer to the zeroth-order approximation as the Mink- 
owski-space approximation. Direct gauge theory for the Poincar6 group 
thus satisfies the first of the three parts of the acid test. 

Now that we have classical gauge theory on Minkowski space-time as 
the zeroth-order approximation, the action of the Poincar6 group is 
necessarily global. Thus, fixing the coordinate cover of M4 necessarily 
inforces Plo-gauge conditions for the whole theory; that is, loss of gauge 
covariance in the e-expansion process is an essential and unavoidable 
consequence of obtaining satisfaction of the first part of the acid test. 

7. GRAVITATIONAL CORRECTIONS 

We now know that the zeroth-order approximation is classical gauge 
theory on Minkowski space, and hence the action of the Poincar6 group is 
necessarily global in the zeroth-order approximation. Accordingly, we may 
view the first- and higher order approximations as corrections that arise 
because of the local action of Plo (i.e., gravitational corrections). We confine 
our attention in this section to the first-order approximation in view of the 
value of e established in Section 3. 

The representations established in previous sections lead directly to 
the following evaluations: 

i i ce i rn i 
B I j  : - b l j  = W o j  l~,,,x + r (51) 
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B I = . , r , , ,  k m W0k~r.X + 4~0~ 
gw = hipBl~ + Bl~hpj 

g/J= - h  ip glpqh qJ 

a a 1 ~ f l  oo ~ = d W o ,  O, ~ = dW~ + : C ~  ~Wo ^ WJ 
Next, we note that (5), (12), and (14) imply 

R l i j -  a m t~ a 1 m l ~ k j  - -  O o m i l a j  , R 1  ~-  v O r n k  ~aj  r~ 

(52) 

(53) 

(54) 

(55) 

(56) 

From now on, let us take the cosmological constant to be zero (h --- 0). Thus, 
with K = e, the scaled version of the field equations (15) becomes 

Remembering that the curvature tensor vanishes in the zeroth-order approxi- 
mation, we see that the first-order approximation of (15) is given by 

1 RI~ -~  R1 hi] = %u (57) 

Writing this out explicitly, we have 

ot m 1 a m pq  
O[ m W o i  ] l~, j  - ~ h l j a [  m W o p ] l  o, q h = 7o i  ( 5 8 )  

The momentum-energy tensor of the corresponding classical gauge theory 
thus drives the first-order approximation for the compensating fields of the 
Lorentz sector! 

The spin field equations (16) are handled in a similar fashion. We first 
note that 

--  i i - - i  i 
L a k  = e l , ~ k  + "  �9 ", S k j  = e S l k j " ~ - "  " " (59) 

where 
i o~ i i $1 kj = Work ll,~ Ij] + OtkB lj] (60) 

When (18) is substituted into (16), the scaled spin equations become 

- - - k i n  ~ j  -- i --i -- j 2 ~ j  i - k  l i d  A~t l tE  Bg (S,.L~k-2S~,~L~k) = c, V k l , - ,  A B' :r  

A cancellation of the resulting e 2 terms on both sides of these equations 
gives the first-order approximation for the spin equations: 

krn j i i h (S~iml~k-2S~imljk) - t  j -  ,-OA~V.~'t~B~oa'r' ~ (61) 

The spin currents of the classical gauge theory of  mater fields on Minkowski 
space thus drive the spin field equations in first approximation. On the 
other hand, if we view (61) as a system of equations for the determination 
of the leading terms in torsion (remember that the torsion tensor starts with 
terms of order e), we see that the spin currents of the classical gauge theory 
of matter serve to determine the leading terms in torsion. In particular, this 
determination is algebraic. 
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For the matter field equations, we go back to the form given by (28). 
A lengthy, but straightforward analysis similar to that used above gives the 
following first-order approximation for the matter fields: 

j b E j b E j 
0 2 L t A  - -  A o 2  f b a L l l  ~ - -  L 1 A  - -  A l j  f b A L o E  

_ i j j i b E i j J i 
b l iLoe )  A o j f  M (  B l i L o E  + - - 0 2 { B I I L o A +  b l i L o A } +  

IXZ a ltdr e I j i 
+ "" o2 ~" ,~A'--,O~ + B l iLoA (62) 

The first-order gravitational corrections to the matter fields might be 
expected to be complicated, and indeed they are, as (62) boisterously shows. 
Other than to note that the same differential operator occurs on the left-hand 
sides of (49) and (62), there is not much more that can be said without an 
explicit choice for the Lagrangian for the matter fields. 

Proceeding in exactly the same way, one can obtain the first-order 
approximation of the field equations for the compensating 1-forms for the 
internal symmetry group as 

2 0 j G l { - ~  a v c  ~ 2i o a  a t .  c r2_ j i  t i r A~T t E t i r AaT t E 
x ' ~ O j  ~a  b ~ l c  - - ~ l - X l j  I~'a b~JOe - -  ~ l A J b E X O  - -  ~ - ' O A J b E ~ I  

k i A E i m A E 
= B l k L o A f b ~ o  + b l m L o A f b ~ o  (63) 

There is not much that can be said here, except to note that the compensating 
fields for the internal symmetry group have nontrivial first-order gravita- 
tional corrections. 

The field equations for the first-order correction fields are (57) and 
(61)-(63). Of these, (57) and (61) are seen to be l inear field equations that 
can be solved by themselves; that is, they do not involve the first-order 
fields or A fields. In fact, they serve to determine the zeroth-order W/fields 
and ~b fields (remember that these fields always occur multiplied by e, so 
that the zeroth-order W and ~b fields determine the first-order geometric 
quantities). This is simply a reflection of the fact that the Plo field equations 
are at least of  first order in e. Once the zeroth-order W fields and ~b fields 
have been determined, they may be substituted into (62) and (63), which 
become l inear field equations for the determination of the first-order 
fields and A fields. We thus have field equations for all first-order correction 
fields and the second part of the acid test is satisfied. 

An inspection of the first-order field equations shows that a specific 
problem obtains only upon specification of the matter Lagrangian and the 
free field Lagrangian for the compensating fields for the internal symmetry 
group. Further progress can thus be made only for explicit problems. The 
third part of  the acid test cannot be implemented except in the context of 
specific problems. We can only note that the representation 

~ A  = ~ 0  A + 8 ~ G c - 4 ~ 1 A  +" " " (64) 
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indicates that changes in the observables due to the first-order terms may 
be expected to be negligible except in situations where the first-order fields 
are large on the scale determined by e. 

The accuracy or lack of accuracy that obtains in the first-order approxi- 
mation cannot be upset by a change of guage for Plo, because the e- 
expansion process has already broken the local gauge covariance. The 
coordinate cover of M4 and the gauge are fixed when we solve the zeroth- 
order field equations, and whatever then obtains in the first-order approxi- 
mation has to be lived with. It cannot be changed after the fact in order to 
improve the approximation! 

It is interesting to note at this juncture that breaking of the Plo-gauge 
covariance by the s-expansion process has features in common with spon- 
taneous symmetry breaking in classical gauge theory. Noting that the zeroth- 
order theory is classical gauge theory on Minkowski space-time, we may 
view the e-expansion process as an expansion about solutions of classical 
gauge theory. Indeed, (64) may be rewritten in the equivalent form 

~.ta = ~IYoA ..~ "~A (65) 

in which case E A represent the total correction to the Minkowski values. 
We can then proceed to find field equations for the E's by substituting (65) 
and corresponding expressions for the other field variables into the original 
field equations. The process is thus seen to be dependent on the specific e 
expansion used above only in that the zeroth-order approximation in s is 
classical gauge theory on Minkowski space-time. Now, classical gauge 
theory obtains in Minkowski space-time, and hence expansion about solu- 
tions of classical gauge theory forces Plo to act only globally. In effect, 
looking for solutions in a neighborhood of  a solution of classical gauge 
theory breaks the local action of Plo all the way down to global action. 
There, is thus an essential difference between the symmetry breaking invol- 
ved in direct gauge theory for P~o and spontaneous symmetry breaking in 
classical gauge theory, but then the group actions are also essentially 
different--the internal symmetry group acts only on the matter fields, while 
P~o acts both on the matter fields and on the base manifold. It is then easily 
seen that it is the action of P~o on the base manifold that is the cause of 
the violent symmetry breaking from local action to global action when 
expanding about solutions of the classical theory. 
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